The work done (\( W \)) in increasing the surface area of a soap bubble is given by:
\[ W = \Delta U = S \times \Delta A, \]
where:
A soap bubble has two surfaces (inner and outer). The initial surface area (\( A_i \)) and final surface area (\( A_f \)) are given by:
\[ A_i = 2 \times 4\pi r_i^2, \quad A_f = 2 \times 4\pi r_f^2. \]
The change in surface area (\( \Delta A \)) is:
\[ \Delta A = A_f - A_i = 2 \times 4\pi (r_f^2 - r_i^2). \]
Substitute \( r_i = 0.1 \, \text{m} \) and \( r_f = 0.2 \, \text{m} \):
\[ \Delta A = 8\pi \left( r_f^2 - r_i^2 \right) = 8\pi \left( (0.2)^2 - (0.1)^2 \right). \]
Simplify:
\[ \Delta A = 8\pi \left( 0.04 - 0.01 \right) = 8\pi \times 0.03. \]
Substitute \( \Delta A = 8\pi \times 0.03 \) and \( S = 3.5 \times 10^{-2} \, \text{N/m} \) into the formula for work done:
\[ W = S \times \Delta A = (3.5 \times 10^{-2}) \times 8 \pi \times 0.03. \]
Using \( \pi \approx \frac{22}{7} \):
\[ W = (3.5 \times 10^{-2}) \times 8 \times \frac{22}{7} \times 0.03. \]
Simplify step by step:
\[ W = 3.5 \times 8 \times 22 \times 3 \times 10^{-2} \times 10^{-2} \div 7. \]
\[ W = \frac{3.5 \times 8 \times 22 \times 3}{7} \times 10^{-4}. \]
\[ W = 264 \times 10^{-4} \, \text{J}. \]
The work done is \( 264 \times 10^{-4} \, \text{J} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: