The emissive power $E$ of a blackbody is calculated using the Stefan-Boltzmann law:
\[
E = \sigma T^4
\]
Where:
- $E$ = emissive power in W/m$^2$
- $\sigma$ = Stefan-Boltzmann constant = $5.67 \times 10^{-8}$ W/m$^2$K$^4$
- $T$ = temperature in Kelvin = 400 K
Substitute the values into the formula:
\[
E = 5.67 \times 10^{-8} \times (400)^4
\]
First, calculate $400^4$:
\[
400^4 = (4 \times 10^2)^4 = 4^4 \times 10^8 = 256 \times 10^8 = 2.56 \times 10^{10}
\]
Now, calculate emissive power:
\[
E = 5.67 \times 10^{-8} \times 2.56 \times 10^{10} = (5.67 \times 2.56) \times 10^{2}
= 14.5152 \times 10^2 = 1451.52\ \text{W/m}^2
\]
Rounding appropriately, the emissive power is:
\[
\boxed{1451.26\ \text{W/m}^2}
\]