The surface area \( S \) of a sphere is given by:
\[
S = 4\pi r^2,
\]
where \( r \) is the radius of the sphere.
The volume \( V \) of the sphere is given by:
\[
V = \frac{4}{3} \pi r^3.
\]
We are given:
\[
\frac{dS}{dt} = 2 \, \text{cm}^2/\text{sec}, \quad r = 6 \, \text{cm}.
\]
We need to find \( \frac{dV}{dt} \), the rate of increase of volume.
Step 1: Relating \( \frac{dS}{dt} \) and \( \frac{dr}{dt} \)
Differentiate \( S = 4\pi r^2 \) with respect to \( t \):
\[
\frac{dS}{dt} = 8\pi r \frac{dr}{dt}.
\]
Rearrange to solve for \( \frac{dr}{dt} \):
\[
\frac{dr}{dt} = \frac{\frac{dS}{dt}}{8\pi r}.
\]
Substitute \( \frac{dS}{dt} = 2 \) and \( r = 6 \):
\[
\frac{dr}{dt} = \frac{2}{8\pi \cdot 6} = \frac{1}{24\pi}.
\]
Step 2: Relating \( \frac{dV}{dt} \) and \( \frac{dr}{dt} \)
Differentiate \( V = \frac{4}{3}\pi r^3 \) with respect to \( t \):
\[
\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}.
\]
Substitute \( r = 6 \) and \( \frac{dr}{dt} = \frac{1}{24\pi} \):
\[
\frac{dV}{dt} = 4\pi (6)^2 \cdot \frac{1}{24\pi}.
\]
Simplify:
\[
\frac{dV}{dt} = 4\pi \cdot 36 \cdot \frac{1}{24\pi} = \frac{144}{24} = 6 \, \text{cm}^3/\text{sec}.
\]
Final Answer:
\[
\boxed{6 \, \text{cm}^3/\text{sec}}
\]