Part 1: Solving \( |x - 2|^2 + |x - 2| - 2 = 0 \)
Part 2: Solving \( x^2 - 2|x - 3| - 5 = 0 \)
We need to consider two cases for the absolute value:
Check if these solutions satisfy \( x < 3 \):
Squares of the roots: \[ (-1 + 2\sqrt{3})^2 + (-1 - 2\sqrt{3})^2 = (1 - 4\sqrt{3} + 12) + (1 + 4\sqrt{3} + 12) = 13 - 4\sqrt{3} + 13 + 4\sqrt{3} = 26 \]
Final Calculation: The sum of the squares of the roots of the first equation is 10, and the sum of the squares of the roots of the second equation is 26. Total sum = 10 + 26 = 36.
Answer: The answer is 36 (Option 3).
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: