Step 1: Let the digits of the number be.
Let the tens digit be \( x \) and the units digit be \( y \). Then, the number is \( 10x + y \). |
Step 2: Write the given conditions.
The sum of the digits is 9: \[ x + y = 9 \quad \text{(i)} \] 9 times the number is equal to twice the number formed by reversing the digits: \[ 9(10x + y) = 2(10y + x) \] Step 3: Simplify the equation.
\[ 90x + 9y = 20y + 2x \] \[ 88x = 11y \Rightarrow 8x = y \quad \text{(ii)} \] Step 4: Substitute (ii) into (i).
\[ x + 8x = 9 \Rightarrow 9x = 9 \Rightarrow x = 1 \] \[ y = 8x = 8 \] Step 5: Find the number.
\[ \text{Number} = 10x + y = 10(1) + 8 = 18 \] Step 6: Check the condition.
\[ 9 \times 18 = 162, \quad 2 \times 81 = 162 \] Hence, the condition is satisfied.
Step 7: Conclusion.
The required number is 18.
Match List-I with List-II and choose the correct option:
\[ \begin{array}{|l|l|} \hline \textbf{LIST-I (Function)} & \textbf{LIST-II (Expansion)} \\ \hline A. \log(1-x) & I. 1 + \frac{1}{3} + \frac{1}{6} + \frac{3}{40} + \frac{15}{336} + \dots \\ \hline B. \sin^{-1} x & II. 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \\ \hline C. \log 2 & III. x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, -1 < x \le 1 \\ \hline D. \frac{\pi}{2} & IV. -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, -1 \le x < 1 \\ \hline \end{array} \]
The following table shows the ages of the patients admitted in a hospital during a year. Find the mode and the median of these data.
\[\begin{array}{|c|c|c|c|c|c|c|} \hline Age (in years) & 5-15 & 15-25 & 25-35 & 35-45 & 45-55 & 55-65 \\ \hline \text{Number of patients} & \text{6} & \text{11} & \text{21} & \text{23} & \text{14} & \text{5} \\ \hline \end{array}\]