Step 1: Identify the coefficients.
The given quadratic equation is \( 6x^2 - x - 2 = 0 \), where \( a = 6 \), \( b = -1 \), and \( c = -2 \).
Step 2: Apply the quadratic formula.
The roots are given by \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).
\[
x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(6)(-2)}}{2(6)}
\]
\[
x = \frac{1 \pm \sqrt{1 + 48}}{12}
\]
\[
x = \frac{1 \pm \sqrt{49}}{12}
\]
\[
x = \frac{1 \pm 7}{12}
\]
Step 3: Calculate the two roots.
\[
x_1 = \frac{1 + 7}{12} = \frac{8}{12} = \frac{2}{3}
\]
\[
x_2 = \frac{1 - 7}{12} = \frac{-6}{12} = -\frac{1}{2}
\]
The roots are \( \frac{2}{3} \) and \( -\frac{1}{2} \).