Define the General Term:
Let the general term in the expansion of \[ \left( \frac{1}{25} + \frac{1}{5^3} \right)^{15} \] be given by:
\[ T_{r+1} = \binom{15}{r} \left( \frac{1}{5^3} \right)^r \left( \frac{1}{25} \right)^{15 - r}. \]
Simplifying the Term:
We can rewrite this as:
\[ T_{r+1} = \binom{15}{r} \times \frac{1}{5^{3r}} \times \frac{1}{25^{15 - r}} = \binom{15}{r} \times \frac{1}{5^{3r}} \times \frac{1}{5^{2(15 - r)}} = \binom{15}{r} \times \frac{1}{5^{3r + 2(15 - r)}}. \]
Simplifying the exponent of \(5\): \[ 3r + 2(15 - r) = r + 30. \]
Identifying Rational Terms:
For the term to be rational, \(r + 30\) must be an integer, which it always is since \(r\) is an integer.
Therefore, all terms are rational. We consider the sum of terms for \(r = 0\) and \(r = 15\), as these are the two rational terms.
Calculating the Terms:
When \(r = 0\):
\[ T_1 = \binom{15}{0} \times \left( \frac{1}{5^3} \right)^0 \times \left( \frac{1}{25} \right)^{15} = 1 \times 1 \times \frac{1}{5^{30}} = \frac{1}{5^{30}} \approx 8. \]
When \(r = 15\):
\[ T_{16} = \binom{15}{15} \times \left( \frac{1}{5^3} \right)^{15} \times \left( \frac{1}{25} \right)^0 = 1 \times \frac{1}{5^{45}} \times 1 = \frac{1}{5^{45}} \approx 3125. \]
Sum of the Terms:
The sum of these two terms is: \[ 8 + 3125 = 3133. \]
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to