To determine the standard Gibbs energy ($\Delta G^\ominus$) for the given reaction: A(s) + B$^{2+}$ (aq) $\rightleftharpoons$ A$^{2+}$ (aq) + B(s), we use the relationship between $\Delta G^\ominus$ and the equilibrium constant ($K_c$). The equation is given by:
Δ G°=-RT\ln K_c
Where:
- Δ G° is the standard Gibbs free energy change.
- R is the universal gas constant, 8.314 J/(mol·K).
- T is the temperature in Kelvin. At 25°C, T = 298 K.
- Kc is the equilibrium constant, 1012 in this case.
Let's substitute the values to calculate Δ G°:
Δ G° = -(8.314 J/(mol·K) × 298 K × ln(1012))
First, convert the logarithmic expression:
ln(1012) = 12 × ln(10) ≈ 12 × 2.303 = 27.636
Substitute back into the equation:
Δ G° = -8.314 × 298 × 27.636 J/mol
Δ G° ≈ -685017 J/mol = -685.017 kJ/mol
Rounding to a proper significant figure and given options, we find:
Δ G° ≈ -68.47 kJ/mol