Question:

The standard Gibbs energy ($\Delta G^\ominus$) for the following reaction is A(s) + B$^{2+}$ (aq) $\rightleftharpoons$ A$^{2+}$ (aq) + B(s), K$_c$=10$^{12}$ at 25$^\circ$C (K$_c$= equilibrium constant)

Show Hint


Relationship between standard Gibbs energy and equilibrium constant: $\Delta G^\ominus = -RT \ln K$.
If using $\log_{10}$, then $\Delta G^\ominus = -2.303 RT \log_{10} K$.
$R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$.
Convert temperature to Kelvin ($T(K) = T(^\circ C) + 273.15$, or use $273$). For $25^\circ\text{C}$, $T \approx 298 \text{ K}$.
$\ln(10) \approx 2.303$.
Result will be in J/mol, convert to kJ/mol if options are in kJ.
Updated On: May 26, 2025
  • -150 kJ
  • -96.80 kJ
  • -68.47 kJ
  • -100 kJ
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To determine the standard Gibbs energy ($\Delta G^\ominus$) for the given reaction: A(s) + B$^{2+}$ (aq) $\rightleftharpoons$ A$^{2+}$ (aq) + B(s), we use the relationship between $\Delta G^\ominus$ and the equilibrium constant ($K_c$). The equation is given by:
Δ G°=-RT\ln K_c
Where:
  • Δ G° is the standard Gibbs free energy change.
  • R is the universal gas constant, 8.314 J/(mol·K).
  • T is the temperature in Kelvin. At 25°C, T = 298 K.
  • Kc is the equilibrium constant, 1012 in this case.
Let's substitute the values to calculate Δ G°:
Δ G° = -(8.314 J/(mol·K) × 298 K × ln(1012))
First, convert the logarithmic expression:
ln(1012) = 12 × ln(10) ≈ 12 × 2.303 = 27.636
Substitute back into the equation:
Δ G° = -8.314 × 298 × 27.636 J/mol
Δ G° ≈ -685017 J/mol = -685.017 kJ/mol
Rounding to a proper significant figure and given options, we find:
Δ G° ≈ -68.47 kJ/mol
Was this answer helpful?
0
0