The standard enthalpy of formation of $CO_2$(g), ${CaO(s)}$ and ${CaCO_3(s)}$ are -393, -634, -1210 kJ mol$^{-1}$ respectively. If all the substans are in standard state, the standard enthalpy of decomposition of calcium carbonate to ${CaO(s)}$ and ${CO_2(g)}$ (in kJ mol$^{-1}$) is
We are given a decomposition reaction:
\[ \mathrm{CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)} \]
To find the standard enthalpy change (\( \Delta H^\circ \)) for this decomposition, apply Hess's law:
\[ \Delta H^\circ = \sum \Delta H^\circ_f(\text{products}) - \sum \Delta H^\circ_f(\text{reactants}) \]
Given:
\[ \begin{aligned} \Delta H^\circ_f(\mathrm{CO_2 (g)}) &= -393 \text{ kJ/mol} \\ \Delta H^\circ_f(\mathrm{CaO (s)}) &= -634 \text{ kJ/mol} \\ \Delta H^\circ_f(\mathrm{CaCO_3 (s)}) &= -1210 \text{ kJ/mol} \end{aligned} \]
Substitute into the formula:
\[ \Delta H^\circ = [(-634) + (-393)] - (-1210) = -1027 + 1210 = 183 \text{ kJ/mol} \]
Hence, the standard enthalpy of decomposition is \( 183 \text{ kJ/mol} \), indicating an endothermic reaction.