The standard electrode potential (E°) of a half-cell reaction is influenced by the following factors:
However, ionisation of a solid metal atom (the process of removing an electron from the solid metal) is not directly involved in determining the standard electrode potential. Instead, the process begins with the metal ion already present in solution (M+) and does not depend on the ionisation energy of the metal in its solid state.
The standard electrode potential does not depend on the ionisation of a solid metal atom. Therefore, the correct answer is (C).
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
Let \( a_1, a_2, a_3, \ldots \) be in an A.P. such that \[ \sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, \quad a_1 \neq 0. \] If \[ \sum_{k=1}^{n} a_k = 0, \] then \( n \) is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: