For questions involving \(H_2\) liberation:
• Compare the reduction potential of the metal ion with the standard hydrogen electrode (SHE).
• Negative reduction potentials indicate the ability to liberate \(H_2\) gas.
V2+ and Cr2+
V2+ and Mn2+
Cr2+ and Co2+
Mn2+ and Co2+
- Metal cations with negative values of reduction potential (\(\text{M}^{3+}/\text{M}^{2+}\)) or positive values of oxidation potential (\text{M}^{2+}/\text{M}^{3+}\)) can reduce H\(^+\) ions and liberate H\(_2\) gas from dilute acid.
- For the given metals:
V\(^{2+}\) has a reduction potential of \(-0.26~\text{V}\).
Cr\(^{2+}\) has a reduction potential of \(-0.41~\text{V}\).
- Both values are negative, meaning V\(^{2+}\) and Cr\(^{2+}\) can reduce H\(^+\) ions to liberate H\(_2\) gas.
Final Answer: \((3)\) V\(^{2+}\) and Cr\(^{2+}\).


Electricity is passed through an acidic solution of Cu$^{2+}$ till all the Cu$^{2+}$ was exhausted, leading to the deposition of 300 mg of Cu metal. However, a current of 600 mA was continued to pass through the same solution for another 28 minutes by keeping the total volume of the solution fixed at 200 mL. The total volume of oxygen evolved at STP during the entire process is ___ mL. (Nearest integer)
Given:
$\mathrm{Cu^{2+} + 2e^- \rightarrow Cu(s)}$
$\mathrm{O_2 + 4H^+ + 4e^- \rightarrow 2H_2O}$
Faraday constant = 96500 C mol$^{-1}$
Molar volume at STP = 22.4 L
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 