We are given:
\[
k = 5 \times 10^{-5} \, \text{S cm}^{-1}, \quad C = 0.0025 \, \text{M}, \quad \Lambda_{\text{m}} \, \text{(limiting molar conductivity)} = 400 \, \text{S cm}^2 \text{mol}^{-1}
\]
Step 1: Calculate molar conductivity
\[
\Lambda_{\text{m}} = \frac{k \times 1000}{C}
\]
Substitute the given values:
\[
\Lambda_{\text{m}} = \frac{5 \times 10^{-5} \times 1000}{0.0025} = \frac{5 \times 10^{-2}}{2.5 \times 10^{-3}} = 20 \, \text{S cm}^2 \text{mol}^{-1}
\]
Step 2: Degree of dissociation
\[
\alpha = \frac{20}{400} = \frac{1}{20}
\]
Step 3: Calculate dissociation constant \( K_a \)
\[
K_a = \frac{C \alpha^2}{1 - \alpha}
\]
Substitute the values:
\[
K_a = \frac{0.0025 \times \left(\frac{1}{20}\right)^2}{1 - \frac{1}{20}} = \frac{0.0025 \times \frac{1}{400}}{\frac{19}{20}} = \frac{0.0025 \times 10^{-6}}{19/20} = 66 \times 10^{-7}
\]
Thus, the dissociation constant \( K_a \) is \( 66 \times 10^{-7} \).