Concept:
Expressions of the form \(x\,dy - y\,dx\) are commonly simplified using the identity:
\[
d\!\left(\frac{y}{x}\right)=\frac{x\,dy-y\,dx}{x^2}
\]
Such differential equations are generally solved by converting them into functions of \(\dfrac{y}{x}\) or by suitable substitutions involving \(\sqrt{x^2+y^2}\).
Step 1: Rewrite the given equation.
\[
x\,dy - y\,dx = \sqrt{x^2+y^2}\,dx
\]
Divide both sides by \(x^2\):
\[
\frac{x\,dy-y\,dx}{x^2}=\frac{\sqrt{x^2+y^2}}{x^2}\,dx
\]
Step 2: Use the differential identity.
\[
d\!\left(\frac{y}{x}\right)=\frac{x\,dy-y\,dx}{x^2}
\]
Thus,
\[
d\!\left(\frac{y}{x}\right)=\frac{\sqrt{x^2+y^2}}{x^2}\,dx
\]
Step 3: Simplify the right-hand side.
\[
\frac{\sqrt{x^2+y^2}}{x^2}
= \frac{\sqrt{x^2\left(1+\left(\frac{y}{x}\right)^2\right)}}{x^2}
= \frac{1}{x}\sqrt{1+\left(\frac{y}{x}\right)^2}
\]
Let
\[
u=\frac{y}{x}
\]
Then,
\[
du=\frac{1}{x}\sqrt{1+u^2}\,dx
\]
Step 4: Integrate both sides.
\[
\int du = \int \frac{1}{x}\sqrt{1+u^2}\,dx
\]
This gives:
\[
u = \sqrt{1+u^2}+c
\]
Substituting back \(u=\dfrac{y}{x}\):
\[
\frac{y}{x} = \frac{\sqrt{x^2+y^2}}{x}+c
\]
Multiplying throughout by \(x\):
\[
y = \sqrt{x^2+y^2} + cx
\]
Rearranging,
\[
\sqrt{x^2+y^2} = cx + y
\]