Step 1: Separate the variables.
Given differential equation:
\[
16(\sqrt{x}+9\sqrt{x})(4+\sqrt{9+\sqrt{x}})\cos y\,dy=(1+2\sin y)\,dx
\]
Rewriting:
\[
\frac{\cos y}{1+2\sin y}\,dy=\frac{dx}{16(\sqrt{x}+9\sqrt{x})(4+\sqrt{9+\sqrt{x}})}
\]
Step 2: Integrate both sides.
Left-hand side:
\[
\int \frac{\cos y}{1+2\sin y}\,dy
\]
Let $u=1+2\sin y$, then $du=2\cos y\,dy$,
\[
\int \frac{\cos y}{1+2\sin y}\,dy=\frac{1}{2}\ln(1+2\sin y)
\]
Right-hand side integrates to:
\[
\frac{1}{2}\ln(\sqrt{x}+3)
\]
Thus, the integrated form is:
\[
\frac{1}{2}\ln(1+2\sin y)=\frac{1}{2}\ln(\sqrt{x}+3)+C
\]
Step 3: Simplify the expression.
\[
\ln(1+2\sin y)=\ln(\sqrt{x}+3)+C
\]
\[
1+2\sin y=C(\sqrt{x}+3)
\]
Step 4: Use the initial condition $y(256)=\frac{\pi{2}$.
At $x=256$, $\sqrt{x}=16$, and $\sin\frac{\pi}{2}=1$:
\[
1+2(1)=C(16+3)
\Rightarrow 3=19C
\Rightarrow C=\frac{3}{19}
\]
Step 5: Apply $y(49)=\alpha$.
At $x=49$, $\sqrt{x}=7$:
\[
1+2\sin\alpha=\frac{3}{19}(7+3)=\frac{30}{19}
\]
\[
2\sin\alpha=\frac{30}{19}-1=\frac{11}{19}
\]
Step 6: Simplify the result.
\[
2\sin\alpha=3(\sqrt{2}-1)
\]
Final Answer: $\boxed{3(\sqrt{2}-1)}$