Let the circle \(x^2+y^2=4\) intersect the \(x\)-axis at points \(A(a,0)\) and \(B(b,0)\).
Let \(P(2\cos\alpha,2\sin\alpha)\), \(0<\alpha<\frac{\pi}{2}\), and
\(Q(2\cos\beta,2\sin\beta)\) be two points on the circle such that
\((\alpha-\beta)=\frac{\pi}{2}\).
Then the point of intersection of lines \(AQ\) and \(BP\) lies on: