We are given the differential equation:
\[
\frac{dy}{dx} = \frac{y + x \tan \left( \frac{y}{x} \right)}{x}.
\]
Let \( u = \frac{y}{x} \), so \( y = ux \). Now, differentiate \( y = ux \) with respect to \( x \):
\[
\frac{dy}{dx} = u + x \frac{du}{dx}.
\]
Substitute this into the original equation:
\[
u + x \frac{du}{dx} = \frac{ux + x \tan(u)}{x}.
\]
Simplifying:
\[
u + x \frac{du}{dx} = u + \tan(u).
\]
Subtract \( u \) from both sides:
\[
x \frac{du}{dx} = \tan(u),
\]
and divide both sides by \( x \):
\[
\frac{du}{dx} = \frac{\tan(u)}{x}.
\]
Now, separate variables:
\[
\frac{du}{\tan(u)} = \frac{dx}{x}.
\]
Integrating both sides:
\[
\int \frac{1}{\tan(u)} du = \int \frac{1}{x} dx.
\]
The integral of \( \frac{1}{\tan(u)} \) is \( \ln|\sin(u)| \), and the integral of \( \frac{1}{x} \) is \( \ln|x| \):
\[
\ln|\sin(u)| = \ln|x| + C.
\]
Exponentiating both sides:
\[
|\sin(u)| = Cx.
\]
Finally, substitute \( u = \frac{y}{x} \):
\[
\sin\left(\frac{y}{x}\right) = Cx.
\]
Thus, the correct answer is \( cx \).
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Given the differential equation:
\[
\frac{dy}{dx} = \frac{y + x \tan \left( \frac{y}{x} \right)}{x}
\]
Find the solution in terms of \(\sin \frac{y}{x}\).
Step 1: Substitute:
\[
v = \frac{y}{x} \implies y = vx
\]
Then,
\[
\frac{dy}{dx} = v + x \frac{dv}{dx}
\]
Step 2: Substitute into the given equation:
\[
v + x \frac{dv}{dx} = \frac{vx + x \tan v}{x} = v + \tan v
\]
Simplify:
\[
v + x \frac{dv}{dx} = v + \tan v
\]
\[
x \frac{dv}{dx} = \tan v
\]
\[
\frac{dv}{dx} = \frac{\tan v}{x}
\]
Step 3: Separate variables:
\[
\frac{dv}{\tan v} = \frac{dx}{x}
\]
\[
\frac{\cos v}{\sin v} dv = \frac{dx}{x}
\]
\[
\cot v \, dv = \frac{dx}{x}
\]
Step 4: Integrate both sides:
\[
\int \cot v \, dv = \int \frac{dx}{x}
\]
\[
\ln |\sin v| = \ln |x| + C
\]
\[
\sin v = C x
\]
Step 5: Substitute back \( v = \frac{y}{x} \):
\[
\sin \frac{y}{x} = C x
\]
Therefore, the solution is:
\[
\boxed{\sin \frac{y}{x} = C x}
\]