The smallest integer \( n \) such that
\[
\frac{1}{\sin 45^\circ \sin 46^\circ} + \frac{1}{\sin 47^\circ \sin 48^\circ} + \cdots + \frac{1}{\sin 133^\circ \sin 134^\circ} = \frac{1}{\sin(n^\circ)}
\]
Show Hint
Trigonometric Series Symmetry}
Use angle identities: \( \sin(180^\circ - x) = \sin x \)
Group terms like \( \frac{1}{\sin x \sin(180^\circ - x)} \)
Look for patterns in consecutive angle pairings
Use the identity:
\[
\frac{1}{\sin x \sin(180^\circ - x)} = \frac{1}{\sin x \sin x} = \frac{1}{\sin^2 x}
\]
Group terms symmetrically around \( 90^\circ \) — terms like:
\[
\frac{1}{\sin 45^\circ \sin 134^\circ}, \frac{1}{\sin 46^\circ \sin 133^\circ}, \ldots
\]
These reduce using symmetry and ultimately sum up to:
\[
\frac{1}{\sin 1^\circ}
\]