The smallest eigenvalue and the corresponding eigenvector of the matrix \( \begin{bmatrix} 2 & -2 \\ -1 & 6 \end{bmatrix} \) respectively are
\( 1.55 \) and \( \begin{bmatrix} 2.00 \\ 0.45 \end{bmatrix} \)
\( 2.00 \) and \( \begin{bmatrix} 1.00 \\ 1.00 \end{bmatrix} \)
\( 1.55 \) and \( \begin{bmatrix} -2.55 \\ -0.45 \end{bmatrix} \)
\( 1.55 \) and \( \begin{bmatrix} 2.00 \\ -0.45 \end{bmatrix} \)
For the matrix [A] given below, the transpose is __________.
\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix} \]
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:


