Given: $\dfrac{dy}{dx} = xy$
At $(\sqrt{2}, e)$, slope of tangent: $\sqrt{2}e$ $\Rightarrow$ slope of normal: $-\dfrac{1}{\sqrt{2}e}$
Equation of normal:
\[
y - e = -\frac{1}{\sqrt{2}e}(x - \sqrt{2})
\Rightarrow x + \sqrt{2}ey = \sqrt{2}(1 + e^2)
\]
Divide both sides by $\sqrt{2}(1+e^2)$:
\[
\frac{x}{\sqrt{2}(1+e^2)} + \frac{e}{1+e^2} y = 1
\]
Compare with $ax + by = 1$:
\[
a = \frac{1}{\sqrt{2}(1+e^2)}, \quad b = \frac{e}{1+e^2} \Rightarrow \frac{b}{a} = \sqrt{2}e
\]