We need to find the sine of the angle between the straight line \(\frac{x-2}{3} = \frac{3-y}{-4} = \frac{z-4}{5}\) and the plane \(2x - 2y + z = 5\).
First, rewrite the equation of the line in the standard form: \(\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}\). So, the direction vector of the line is \(\vec{b} = (3, 4, 5)\).
The normal vector to the plane \(2x - 2y + z = 5\) is \(\vec{n} = (2, -2, 1)\).
Let \(\theta\) be the angle between the line and the plane. The angle between the direction vector \(\vec{b}\) of the line and the normal vector \(\vec{n}\) of the plane is the complement of \(\theta\), i.e., \(\frac{\pi}{2} - \theta\).
So, \(\sin \theta = \cos(\frac{\pi}{2} - \theta) = \frac{|\vec{b} \cdot \vec{n}|}{|\vec{b}| |\vec{n}|}\)
\(\vec{b} \cdot \vec{n} = (3)(2) + (4)(-2) + (5)(1) = 6 - 8 + 5 = 3\)
\(|\vec{b}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}\)
\(|\vec{n}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3\)
\(\sin \theta = \frac{|3|}{(5\sqrt{2})(3)} = \frac{3}{15\sqrt{2}} = \frac{1}{5\sqrt{2}} = \frac{\sqrt{2}}{10}\)
Therefore, the sine of the angle between the line and the plane is \(\frac{\sqrt{2}}{10}\).
Thus, the correct option is (D) \(\frac{\sqrt{2}}{10}\).
$$ \sin \theta = \frac{|\vec{d} \cdot \vec{n}|}{|\vec{d}| |\vec{n}|}. $$
Compute $ \vec{d} \cdot \vec{n} $:
$$ \vec{d} \cdot \vec{n} = 3(2) + 4(-2) + 5(1) = 6 - 8 + 5 = 3. $$
Compute $ |\vec{d}| $:
$$ |\vec{d}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}. $$
Compute $ |\vec{n}| $:
$$ |\vec{n}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3. $$
Substitute into the formula for $ \sin \theta $:
$$ \sin \theta = \frac{|3|}{5\sqrt{2} \cdot 3} = \frac{3}{15\sqrt{2}} = \frac{1}{5\sqrt{2}} = \frac{\sqrt{2}}{10}. $$
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2