Question:

The shortest distance between the lines \(\frac{x−3}{2}=\frac{y−2}{3}=\frac{z−1}{−1}\) and \(\frac{x+3}{2}=\frac{y-6}{1}=\frac{z−5}{3}\) is

Updated On: Mar 4, 2024
  • \(\frac{18}{\sqrt5}\)
  • \(\frac{22}{3\sqrt5}\)
  • \(\frac{46}{3\sqrt5}\)
  • \(6\sqrt3\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

\(L_1\) : \(\frac{x−3}{2}=\frac{y−2}{3}=\frac{z−1}{−1}\)

\(L_2\) : \(\frac{x+3}{2}=\frac{y-6}{1}=\frac{z−5}{3}\)

Now,

\(\overrightarrow p×\overrightarrow q\) = \(\begin{vmatrix}\hat i& \hat j& \hat k\\   2 &3 &−1 \\                2 & 1&  3 \end{vmatrix} =10\hat i−8\hat j−4\hat k\)

\(\overrightarrow a_2−\overrightarrow a_1=6\hat i−4\hat j−4\hat k\)

\(∴S.D=\begin{vmatrix}\frac{60+32+16}{\sqrt{100+64+16}}\end{vmatrix}\)

\(\frac{108}{\sqrt{180}}=\frac{18}{\sqrt5}\)

Was this answer helpful?
0
0

Top Questions on Shortest Distance between Two Lines

View More Questions

Concepts Used:

Shortest Distance Between Two Parallel Lines

Formula to find distance between two parallel line:

Consider two parallel lines are shown in the following form :

\(y = mx + c_1\) …(i)

\(y = mx + c_2\) ….(ii)

Here, m = slope of line

Then, the formula for shortest distance can be written as given below:

\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)

If the equations of two parallel lines are demonstrated in the following way :

\(ax + by + d_1 = 0\)

\(ax + by + d_2 = 0\)

then there is a little change in the formula.

\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)