\(6\sqrt3\)
\(L_1\) : \(\frac{x−3}{2}=\frac{y−2}{3}=\frac{z−1}{−1}\)
\(L_2\) : \(\frac{x+3}{2}=\frac{y-6}{1}=\frac{z−5}{3}\)
Now,
\(\overrightarrow p×\overrightarrow q\) = \(\begin{vmatrix}\hat i& \hat j& \hat k\\ 2 &3 &−1 \\ 2 & 1& 3 \end{vmatrix} =10\hat i−8\hat j−4\hat k\)
\(\overrightarrow a_2−\overrightarrow a_1=6\hat i−4\hat j−4\hat k\)
\(∴S.D=\begin{vmatrix}\frac{60+32+16}{\sqrt{100+64+16}}\end{vmatrix}\)
= \(\frac{108}{\sqrt{180}}=\frac{18}{\sqrt5}\)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)