Question:

The shortest distance between the lines \(x+1=2 y=-12 z\) and \(x=y+2=6 z-6\) is

Updated On: Jan 8, 2025
  • $\frac{3}{2}$
  • 3
  • 2
  • $\frac{5}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The given lines are:

\( x+1 = 2y = -12z \)

and

\( x = y+2 = 6z - 6 \).

The formula for the shortest distance between two skew lines is:

Shortest distance (S.D.) = \(\frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|} \)

Here:

\(\mathbf{a} = (-1, 0, 0), \quad \mathbf{b} = (0, -2, -1), \quad \mathbf{p} = (1, \frac{1}{2}, -\frac{1}{12}), \quad \mathbf{q} = (1, 1, \frac{1}{6}).\)

Step 1: Compute \(\mathbf{p} \times \mathbf{q}\)

The cross product \(\mathbf{p} \times \mathbf{q}\) is given by:

\( \mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & \frac{1}{2} & -\frac{1}{12} \\ 1 & 1 & \frac{1}{6} \end{vmatrix}. \)

Expanding the determinant:

\( \mathbf{p} \times \mathbf{q} = \mathbf{i} \left( \frac{1}{12} - \left( -\frac{1}{12} \right) \right) - \mathbf{j} \left( \frac{1}{6} - \left( -\frac{1}{12} \right) \right) + \mathbf{k} \left( 1 - \frac{1}{2} \right). \)

Simplifying:

\( \mathbf{p} \times \mathbf{q} = \mathbf{i} \cdot \frac{1}{6} - \mathbf{j} \cdot \frac{1}{4} + \mathbf{k} \cdot 0. \)

So:

\( \mathbf{p} \times \mathbf{q} = \frac{1}{6}\mathbf{i} - \frac{1}{4}\mathbf{j}. \)

Step 2: Compute \(|\mathbf{p} \times \mathbf{q}|\)

The magnitude of \(\mathbf{p} \times \mathbf{q}\) is:

\( |\mathbf{p} \times \mathbf{q}| = \sqrt{\left( \frac{1}{6} \right)^2 + \left( -\frac{1}{4} \right)^2}. \)

Simplifying:

\( |\mathbf{p} \times \mathbf{q}| = \sqrt{\frac{1}{36} + \frac{1}{16}} = \sqrt{\frac{4}{144} + \frac{9}{144}} = \sqrt{\frac{13}{144}} = \frac{\sqrt{13}}{12}. \)

Step 3: Compute \(( \mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q} )\)

The vector \(\mathbf{b} - \mathbf{a}\) is:

\( \mathbf{b} - \mathbf{a} = (0 - (-1), -2 - 0, -1 - 0) = (1, -2, -1). \)

15

The dot product \(( \mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q} )\) is:

\( (1, -2, -1) \cdot \left( \frac{1}{6}, -\frac{1}{4}, 0 \right) = 1 \cdot \frac{1}{6} + (-2) \cdot \left( -\frac{1}{4} \right) + (-1) \cdot 0. \)

Simplifying:

\( (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q}) = \frac{1}{6} + \frac{2}{4} + \frac{1}{6} = \frac{1}{6} + \frac{3}{6} = \frac{4}{6} = \frac{2}{3}. \)

Step 4: Compute the shortest distance

Using the formula:

\( \text{S.D.} = \frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|}. \)

Substituting the values:

\( \text{S.D.} = \frac{|\frac{2}{3}|}{\frac{\sqrt{13}}{12}} = \frac{2}{3} \cdot \frac{12}{\sqrt{13}} = \frac{8}{\sqrt{13}}. \)

Finally, rationalizing the denominator gives:

\( \text{S.D.} = \frac{8\sqrt{13}}{13}. \)

Correct Option: 3 (2)

Was this answer helpful?
2
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The correct answer is (C) : 2
\(\frac{x+1}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{-1}{12}} \text{ and } \frac{x}{1}=\frac{y+2}{1}=\frac{z-6}{\frac{1}{6}}\)
\(⇒ \text{Shortest distance}= \frac{(\vec{b}−\vec{a})⋅(\vec{p}\times\vec{q})}{|\vec{p}\times\vec{q}|}\)
\(⇒ \text{S.D.}= (-\hat{i}+2\hat{j}-\hat{k})⋅\frac{(\vec{p}\times\vec{q})}{|\vec{p}\times\vec{q}|}\)
\(\Biggl\{\vec{p}\times\vec{q} \equiv \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\1&\frac{1}{2}&\frac{-1}{12}\\1&1&\frac{1}{6}\end{vmatrix}=\frac{1}{6}\hat{i}-\frac{1}{4}\hat{j}+\frac{1}{2}\hat{k} \text{ or } 2\hat{i}-3\hat{j}+6\hat{k} \Biggl\}\)
\(⇒ \text{S.D.}= \frac{(-\hat{i}+2\hat{j}-\hat{k}).(\hat{2i}-3\hat{j}+6\hat{k})}{\sqrt{2^2+3^2+6^2}}\)

Was this answer helpful?
0
0

Top Questions on Distance between Two Lines

View More Questions

Concepts Used:

Three Dimensional Geometry

Mathematically, Geometry is one of the most important topics. The concepts of Geometry are derived w.r.t. the planes. So, Geometry is divided into three major categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.

Direction Cosines and Direction Ratios of Line:

Consider a line L that is passing through the three-dimensional plane. Now, x,y and z are the axes of the plane and α,β, and γ are the three angles the line makes with these axes. These are commonly known as the direction angles of the plane. So, appropriately, we can say that cosα, cosβ, and cosγ are the direction cosines of the given line L.

Three Dimensional Geometry