The shortest distance between the lines \(x+1=2 y=-12 z\) and \(x=y+2=6 z-6\) is
The given lines are:
\( x+1 = 2y = -12z \)
and
\( x = y+2 = 6z - 6 \).
The formula for the shortest distance between two skew lines is:
Shortest distance (S.D.) = \(\frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|} \)
Here:
\(\mathbf{a} = (-1, 0, 0), \quad \mathbf{b} = (0, -2, -1), \quad \mathbf{p} = (1, \frac{1}{2}, -\frac{1}{12}), \quad \mathbf{q} = (1, 1, \frac{1}{6}).\)
Step 1: Compute \(\mathbf{p} \times \mathbf{q}\)
The cross product \(\mathbf{p} \times \mathbf{q}\) is given by:
\( \mathbf{p} \times \mathbf{q} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & \frac{1}{2} & -\frac{1}{12} \\ 1 & 1 & \frac{1}{6} \end{vmatrix}. \)
Expanding the determinant:
\( \mathbf{p} \times \mathbf{q} = \mathbf{i} \left( \frac{1}{12} - \left( -\frac{1}{12} \right) \right) - \mathbf{j} \left( \frac{1}{6} - \left( -\frac{1}{12} \right) \right) + \mathbf{k} \left( 1 - \frac{1}{2} \right). \)
Simplifying:
\( \mathbf{p} \times \mathbf{q} = \mathbf{i} \cdot \frac{1}{6} - \mathbf{j} \cdot \frac{1}{4} + \mathbf{k} \cdot 0. \)
So:
\( \mathbf{p} \times \mathbf{q} = \frac{1}{6}\mathbf{i} - \frac{1}{4}\mathbf{j}. \)
Step 2: Compute \(|\mathbf{p} \times \mathbf{q}|\)
The magnitude of \(\mathbf{p} \times \mathbf{q}\) is:
\( |\mathbf{p} \times \mathbf{q}| = \sqrt{\left( \frac{1}{6} \right)^2 + \left( -\frac{1}{4} \right)^2}. \)
Simplifying:
\( |\mathbf{p} \times \mathbf{q}| = \sqrt{\frac{1}{36} + \frac{1}{16}} = \sqrt{\frac{4}{144} + \frac{9}{144}} = \sqrt{\frac{13}{144}} = \frac{\sqrt{13}}{12}. \)
Step 3: Compute \(( \mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q} )\)
The vector \(\mathbf{b} - \mathbf{a}\) is:
\( \mathbf{b} - \mathbf{a} = (0 - (-1), -2 - 0, -1 - 0) = (1, -2, -1). \)
15
The dot product \(( \mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q} )\) is:
\( (1, -2, -1) \cdot \left( \frac{1}{6}, -\frac{1}{4}, 0 \right) = 1 \cdot \frac{1}{6} + (-2) \cdot \left( -\frac{1}{4} \right) + (-1) \cdot 0. \)
Simplifying:
\( (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q}) = \frac{1}{6} + \frac{2}{4} + \frac{1}{6} = \frac{1}{6} + \frac{3}{6} = \frac{4}{6} = \frac{2}{3}. \)
Step 4: Compute the shortest distance
Using the formula:
\( \text{S.D.} = \frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|}. \)
Substituting the values:
\( \text{S.D.} = \frac{|\frac{2}{3}|}{\frac{\sqrt{13}}{12}} = \frac{2}{3} \cdot \frac{12}{\sqrt{13}} = \frac{8}{\sqrt{13}}. \)
Finally, rationalizing the denominator gives:
\( \text{S.D.} = \frac{8\sqrt{13}}{13}. \)
Correct Option: 3 (2)
The correct answer is (C) : 2
\(\frac{x+1}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{-1}{12}} \text{ and } \frac{x}{1}=\frac{y+2}{1}=\frac{z-6}{\frac{1}{6}}\)
\(⇒ \text{Shortest distance}= \frac{(\vec{b}−\vec{a})⋅(\vec{p}\times\vec{q})}{|\vec{p}\times\vec{q}|}\)
\(⇒ \text{S.D.}= (-\hat{i}+2\hat{j}-\hat{k})⋅\frac{(\vec{p}\times\vec{q})}{|\vec{p}\times\vec{q}|}\)
\(\Biggl\{\vec{p}\times\vec{q} \equiv \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\1&\frac{1}{2}&\frac{-1}{12}\\1&1&\frac{1}{6}\end{vmatrix}=\frac{1}{6}\hat{i}-\frac{1}{4}\hat{j}+\frac{1}{2}\hat{k} \text{ or } 2\hat{i}-3\hat{j}+6\hat{k} \Biggl\}\)
\(⇒ \text{S.D.}= \frac{(-\hat{i}+2\hat{j}-\hat{k}).(\hat{2i}-3\hat{j}+6\hat{k})}{\sqrt{2^2+3^2+6^2}}\)
Mathematically, Geometry is one of the most important topics. The concepts of Geometry are derived w.r.t. the planes. So, Geometry is divided into three major categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.
Consider a line L that is passing through the three-dimensional plane. Now, x,y and z are the axes of the plane and α,β, and γ are the three angles the line makes with these axes. These are commonly known as the direction angles of the plane. So, appropriately, we can say that cosα, cosβ, and cosγ are the direction cosines of the given line L.