Consider the function \( f(x) = \sin x - x \). We analyze:
- \( f(x)<0 \Rightarrow \sin x<x \Rightarrow \sin x \leq x \)
- This inequality holds true in \( (0, \frac{\pi}{2}) \), as:
- \( \sin x<x \) for all \( x>0 \)
- \( \sin x>x \) for small negative \( x \)
Hence, the valid region is:
\[
\boxed{(0, \frac{\pi}{2})}
\]