The set of all \( x \) for which \( \sin x \leq x \) is:
Show Hint
Comparing Functions Graphically}
Remember standard inequality: \( \sin x<x \) for \( x>0 \)
Use test values: plug in \( x = 0.5, \frac{\pi}{4}, 1 \), etc.
Graphical understanding of concavity can help in verifying inequalities
Consider the function \( f(x) = \sin x - x \). We analyze:
- \( f(x)<0 \Rightarrow \sin x<x \Rightarrow \sin x \leq x \)
- This inequality holds true in \( (0, \frac{\pi}{2}) \), as:
- \( \sin x<x \) for all \( x>0 \)
- \( \sin x>x \) for small negative \( x \)
Hence, the valid region is:
\[
\boxed{(0, \frac{\pi}{2})}
\]