The shortest distance \( d \) between two skew lines is given by the formula: \[ d = \frac{|(\mathbf{r}_2 - \mathbf{r}_1) \cdot (\mathbf{v}_1 \times \mathbf{v}_2)|}{|\mathbf{v}_1 \times \mathbf{v}_2|} \] where \( \mathbf{r}_1 \) and \( \mathbf{r}_2 \) are points on the two lines, and \( \mathbf{v}_1 \) and \( \mathbf{v}_2 \) are the direction vectors of the two lines. From the given equations: - The direction vector of line 1 is \( \mathbf{v}_1 = \hat{i} - 2\hat{j} + 3\hat{k} \)
- The direction vector of line 2 is \( \mathbf{v}_2 = 3\hat{i} - 6\hat{j} + 9\hat{k} \)
- A point on line 1 is \( \mathbf{r}_1 = 2\hat{i} - \hat{j} + 3\hat{k} \)
- A point on line 2 is \( \mathbf{r}_2 = \hat{i} + 4\hat{k} \)
The vector \( \mathbf{r}_2 - \mathbf{r}_1 \) is: \[ \mathbf{r}_2 - \mathbf{r}_1 = (\hat{i} + 4\hat{k}) - (2\hat{i} - \hat{j} + 3\hat{k}) = -\hat{i} + \hat{j} + \hat{k} \] Now, compute the cross product \( \mathbf{v}_1 \times \mathbf{v}_2 \): \[ \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 3 & -6 & 9 \end{vmatrix} \] \[ = \hat{i} \begin{vmatrix} -2 & 3 \\ -6 & 9 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 3 & 9 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 3 & -6 \end{vmatrix} \] \[ = \hat{i} (18 - (-18)) - \hat{j} (9 - 9) + \hat{k} (-6 + 6) \] \[ = 36 \hat{i} + 0 \hat{j} + 0 \hat{k} \] \[ \mathbf{v}_1 \times \mathbf{v}_2 = 36 \hat{i} \] Finally, compute the distance: \[ d = \frac{|(-\hat{i} + \hat{j} + \hat{k}) \cdot (36 \hat{i})|}{|36 \hat{i}|} \] \[ d = \frac{|(-1)(36) + 0 + 0|}{36} = \frac{36}{36} = 1 \] Thus, the shortest distance between the lines is \( \boxed{1} \).