Question:

The roots of quadratic equation \( 2x^2 + x - 4 = 0 \) are:

Show Hint

Use the quadratic formula for any quadratic equation of the form \( ax^2 + bx + c = 0 \). Ensure to correctly compute the discriminant \( b^2 - 4ac \).
Updated On: May 14, 2025
  • \( \frac{-1 \pm \sqrt{33}}{4} \)
  • \( \frac{-1 \pm \sqrt{33}}{2} \)
  • \( \frac{-1 \pm \sqrt{33}}{2} \)
  • \( \frac{-1 \pm \sqrt{33}}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Apply the quadratic formula. The quadratic formula is: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For \( 2x^2 + x - 4 = 0 \), we have \( a = 2 \), \( b = 1 \), and \( c = -4 \). Substituting into the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1^2 - 4(2)(-4)}}{2(2)} = \frac{-1 \pm \sqrt{1 + 32}}{4} = \frac{-1 \pm \sqrt{33}}{4} \] Thus, the roots are \( \frac{-1 \pm \sqrt{33}}{4} \).
Was this answer helpful?
1
0