To solve the problem, we need to find the roots of the quadratic equation:
$ x^2 - 3x - 10 = 0 $
1. Understanding the Standard Form:
A quadratic equation is of the form:
$ ax^2 + bx + c = 0 $
Here, $ a = 1 $, $ b = -3 $, and $ c = -10 $
2. Using the Quadratic Formula:
The roots of a quadratic equation are given by:
$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $
Substituting the values:
$ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-10)}}{2(1)} $
$ x = \frac{3 \pm \sqrt{9 + 40}}{2} $
$ x = \frac{3 \pm \sqrt{49}}{2} $
$ x = \frac{3 \pm 7}{2} $
3. Calculating the Two Roots:
$ x_1 = \frac{3 + 7}{2} = \frac{10}{2} = 5 $
$ x_2 = \frac{3 - 7}{2} = \frac{-4}{2} = -2 $
Final Answer:
The roots of the equation are $ {-2, \, 5} $
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :