The root mean square (rms) speed of a gas is inversely proportional to the square root of its molar mass:
\[
v_{\text{rms}} \propto \frac{1}{\sqrt{M}}
\]
Let:
- \( M_O = 32 \, \text{g/mol} \) (Oxygen)
- \( M_H = 2 \, \text{g/mol} \) (Hydrogen)
- \( \frac{v_H}{v_O} = \sqrt{\frac{M_O}{M_H}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \)
So,
\[
v_H = 4 \times v_O = 4 \times 500 = 2000 \, \text{m/s}
\]