The mean free path \( \lambda \) of a gas molecule is inversely proportional to the temperature. Therefore, we can use the formula:
\[
\lambda_2 = \lambda_1 \times \frac{T_1}{T_2}
\]
where \( \lambda_1 \) and \( \lambda_2 \) are the mean free paths at temperatures \( T_1 \) and \( T_2 \), respectively.
Given that \( \lambda_1 = 10 \times 10^{-7} \, \text{m} \) at \( T_1 = 27^\circ \text{C} \) and we need to find \( \lambda_2 \) at \( T_2 = 87^\circ \text{C} \), we first convert the temperatures to Kelvin:
\[
T_1 = 27 + 273 = 300 \, \text{K}, \quad T_2 = 87 + 273 = 360 \, \text{K}
\]
Now, applying the formula:
\[
\lambda_2 = 10 \times 10^{-7} \times \frac{300}{360} = 12 \times 10^{-7} \, \text{m}
\]
Thus, the mean free path at 87°C is \( 12 \times 10^{-7 \, \text{m}} \).