



For an ideal gas, the mean squared velocity \( \langle v^2 \rangle \) is related to the temperature by the equation: \[ \langle v^2 \rangle = \frac{3kT}{m} \] where \( k \) is the Boltzmann constant, \( T \) is the temperature, and \( m \) is the mass of the gas molecules.
Step 1: The equation shows a linear relationship between mean squared velocity and temperature.
Step 2: Therefore, the correct graph is a straight line with a positive slope.
Final Conclusion: The graph representing a linear variation of mean squared velocity with temperature corresponds to Option (3).

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 