The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Show Hint
When working with vector magnitudes and dot products, remember to use vector identities like \( (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a}^2 - \vec{b}^2 \).