Question:

The resistance R=VI R = \frac{V}{I} where V=(200±5)V V = (200 \pm 5) \, \text{V} and I=(20±0.2)A I = (20 \pm 0.2) \, \text{A} . The percentage error in the measurement of R R is:

Updated On: Nov 12, 2024
  • 3.5%

  • 7%

  • 3%

  • 5.5%

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Express R R in Terms of V V and I I

R=VI R = \frac{V}{I}

Step 2: Calculate the Percentage Error Using Error Analysis

The relative error in R R is given by:

ΔRR=ΔVV+ΔII \frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I}

Substitute the values:

ΔRR=5200+0.220 \frac{\Delta R}{R} = \frac{5}{200} + \frac{0.2}{20}

Step 3: Simplify the Expression

ΔRR=5200+0.220=5200+2200=7200 \frac{\Delta R}{R} = \frac{5}{200} + \frac{0.2}{20} = \frac{5}{200} + \frac{2}{200} = \frac{7}{200}

Step 4: Calculate the Percentage Error

Percentage Error=ΔRR×100=7200×100=3.5% \text{Percentage Error} = \frac{\Delta R}{R} \times 100 = \frac{7}{200} \times 100 = 3.5\%

So, the correct answer is: 3.5%

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions