The resistance \( R = \frac{V}{I} \) where \( V = (200 \pm 5) \, \text{V} \) and \( I = (20 \pm 0.2) \, \text{A} \). The percentage error in the measurement of \( R \) is:
3.5%
7%
3%
5.5%
\[ R = \frac{V}{I} \]
The relative error in \( R \) is given by:
\[ \frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I} \]
Substitute the values:
\[ \frac{\Delta R}{R} = \frac{5}{200} + \frac{0.2}{20} \]
\[ \frac{\Delta R}{R} = \frac{5}{200} + \frac{0.2}{20} = \frac{5}{200} + \frac{2}{200} = \frac{7}{200} \]
\[ \text{Percentage Error} = \frac{\Delta R}{R} \times 100 = \frac{7}{200} \times 100 = 3.5\% \]
So, the correct answer is: 3.5%
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: