Conductivity \( \kappa \) is related to resistance \(R\) and cell constant \( G^ = L/A \) by \( \kappa = \frac{1}{R} \cdot G^ \).
So, Cell Constant \( G^ = \kappa \times R \).
For 0.
1 M KCl solution:
Resistance \( R_1 = 100 \, \Omega \).
Conductivity \( \kappa_1 = 1.
29 \, \text{S m}^{-1} \).
Convert conductivity to S cm\(^{-1}\) for consistency with molar conductivity units often used:
\( \kappa_1 = 1.
29 \, \text{S m}^{-1} = 1.
29 \, \text{S} \times (100 \, \text{cm})^{-1} = 1.
29 \times 10^{-2} \, \text{S cm}^{-1} = 0.
0129 \, \text{S cm}^{-1} \).
Cell constant \( G^ = \kappa_1 \times R_1 = (0.
0129 \, \text{S cm}^{-1}) \times (100 \, \Omega) = 1.
29 \, \text{cm}^{-1} \).
The cell constant remains the same for the same cell.
For 0.
02 M KCl solution:
Resistance \( R_2 = 520 \, \Omega \).
Conductivity \( \kappa_2 = \frac{G^}{R_2} = \frac{1.
29 \, \text{cm}^{-1}}{520 \, \Omega} \).
\[ \kappa_2 = \frac{1.
29}{520} \, \text{S cm}^{-1} \approx 0.
0024807.
.
.
\, \text{S cm}^{-1} \]
Molar conductivity \( \Lambda_m \) is given by \( \Lambda_m = \frac{\kappa \times 1000}{C} \),
where \( \kappa \) is in S cm\(^{-1}\) and C is the molar concentration in mol L\(^{-1}\) (M).
For the 0.
02 M KCl solution:
Concentration \( C_2 = 0.
02 \) M.
\[ \Lambda_{m,2} = \frac{\kappa_2 \times 1000}{C_2} = \frac{(1.
29/520) \text{ S cm}^{-1} \times 1000 \text{ cm}^3\text{L}^{-1}}{0.
02 \text{ mol L}^{-1}} \]
\[ \Lambda_{m,2} = \frac{1.
29 \times 1000}{520 \times 0.
02} \, \text{S cm}^2 \text{mol}^{-1} \]
\[ \Lambda_{m,2} = \frac{1290}{520 \times 0.
02} = \frac{1290}{10.
4} \]
Calculate \( \frac{1290}{10.
4} \):
\( \frac{1290}{10.
4} = \frac{12900}{104} \).
\( 12900 \div 104 \):
\( 104 \times 1 = 104 \).
Remainder \( 129-104 = 25 \).
Bring down 0: 250.
\( 104 \times 2 = 208 \).
Remainder \( 250-208 = 42 \).
Bring down 0: 420.
\( 104 \times 4 = 416 \).
Remainder \( 420-416 = 4 \).
So, \( \frac{12900}{104} \approx 124.
038.
.
.
\)
\[ \Lambda_{m,2} \approx 124.
04 \, \text{S cm}^2 \text{mol}^{-1} \]
This is approximately 124 S cm\(^2\) mol\(^{-1}\).
This matches option (1).