For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is:
\( x + y - z \)
The problem requires us to find the standard cell potential (E°cell) for the given reaction:
\({Fe}^{2+}(aq) + {Ag}^+(aq) \rightarrow {Fe}^{3+}(aq) + {Ag}(s)\)
We need to determine the expression for the cell potential using the given standard reduction potentials:
To determine the cell potential, we need the standard reduction potential of each half-reaction as it occurs in the overall cell reaction. Let's rewrite these half-reactions as they occur:
Therefore, the cell potential for the overall cell reaction can be calculated as:
\(E^\circ_{cell} = E^\circ_{\text{reduction}} - E^\circ_{\text{oxidation}}\)
\(E^\circ_{cell} = x - (y - z)\)
Therefore, combining the standard potentials:
\(E^\circ_{cell} = x + 2y - 3z\)
Thus, the correct answer is \(x + 2y - 3z\), which corresponds to option 2.
The standard cell potential is given by: \[ E^\circ_{{cell}} = E^\circ_{{cathode}} - E^\circ_{{anode}} \] At the cathode, the reduction half-reaction is \( {Ag}^+ + e^- \to {Ag} \), so the cathode potential is \( E^\circ_{{cathode}} = x \, {V} \).
At the anode, the oxidation half-reaction is \( {Fe} \to {Fe}^{2+} + 2e^- \), which is the reverse of \( {Fe}^{2+} + 2e^- \to {Fe} \).
So, the anode potential is \( E^\circ_{{anode}} = -y \, {V} \). Thus, the standard cell potential is: \[ E^\circ_{{cell}} = x - (-y) = x + y \]
Therefore, the correct answer is \( x + 2y - 3z \), corresponding to option \( \boxed{(2)} \).


In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
