Given:
\[ t = \alpha x^2 + \beta x \]
Differentiating with respect to \( x \):
\[ \frac{dt}{dx} = 2\alpha x + \beta \]
Using:
\[ \frac{1}{v} = 2\alpha x + \beta \quad \implies \quad v = \frac{1}{2\alpha x + \beta} \]
Differentiating with respect to time:
\[ -\frac{1}{v^2} \frac{dv}{dt} = 2\alpha \quad \implies \quad \frac{dv}{dt} = -2\alpha v^3 \]
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: