Given:
\[ t = \alpha x^2 + \beta x \]
Differentiating with respect to \( x \):
\[ \frac{dt}{dx} = 2\alpha x + \beta \]
Using:
\[ \frac{1}{v} = 2\alpha x + \beta \quad \implies \quad v = \frac{1}{2\alpha x + \beta} \]
Differentiating with respect to time:
\[ -\frac{1}{v^2} \frac{dv}{dt} = 2\alpha \quad \implies \quad \frac{dv}{dt} = -2\alpha v^3 \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: