For the fraction to be purely real, the imaginary part of the complex number must be zero.
Let $\sin \alpha = k$: $\frac{1 - ik}{1 + 2ik}$ must be purely real.
Rationalizing, we get: $\text{Imaginary part} = 0 \implies k = 0$.
Thus, $\sin \alpha = 0 \implies \alpha = n\pi, n \in \mathbb{N}$.