\( \sin (6a - 8b) \)
To solve for the real part of the given expression, we first simplify it: \( \frac{\left( \cos a + i \sin a \right)^6}{\left( \sin b + i \cos b \right)^8} \) By applying De Moivre's theorem, we know that
: \( \left( \cos a + i \sin a \right)^6 = \cos (6a) + i \sin (6a) \) \( \left( \sin b + i \cos b \right)^8 = \left( \cos b + i \sin b \right)^8 = \cos (8b) + i \sin (8b) \)
Thus, the given expression becomes:
\( \frac{\cos (6a) + i \sin (6a)}{\cos (8b) + i \sin (8b)} \)
Now, to find the real part of this complex number, we multiply both the numerator and denominator by the conjugate of the denominator:
\( \frac{(\cos (6a) + i \sin (6a)) (\cos (8b) - i \sin (8b))}{(\cos (8b) + i \sin (8b)) (\cos (8b) - i \sin (8b))} \) The denominator simplifies to: \( \cos^2(8b) + \sin^2(8b) = 1 \)
Now, for the numerator:
\( (\cos (6a) + i \sin (6a)) (\cos (8b) - i \sin (8b)) = \cos(6a)\cos(8b) + \sin(6a)\sin(8b) + i \left( \sin(6a)\cos(8b) - \cos(6a)\sin(8b) \right) \)
Using the angle addition formulas for cosine and sine:
\( = \cos(6a + 8b) + i \sin(6a + 8b) \) Thus, the real part of the given expression is: \( \cos(6a + 8b) \) Therefore, the correct answer is \( \boxed{\cos(6a + 8b)} \), corresponding to option (4)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are: