Step 1: Condition for equal roots
For equal roots, the discriminant \( \Delta = b^2 - 4ac = 0 \).
Step 2: Apply values
Here, \( a = 1 \), \( b = -5 \), \( c = k \). \[ (-5)^2 - 4 \times 1 \times k = 0 \Rightarrow 25 - 4k = 0 \]
Step 3: Solve for \( k \)
\[ 4k = 25 \Rightarrow k = \frac{25}{4} \]
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then: