Find centers and radii by completing the square:
Circle 1: $(x+1)^2 + (y-1)^2 = 4 \Rightarrow \text{center } C_1 = (-1,1),\ r_1 = 2$
Circle 2: $(x-1)^2 + (y+1)^2 = 1 \Rightarrow \text{center } C_2 = (1,-1),\ r_2 = 1$
Distance between centers: $\sqrt{(2)^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$
Using tangent condition:
\[
|-m-1+c| = 2\sqrt{m^2+1}, \quad |m+1+c| = \sqrt{m^2+1}
\]
Solve both equations to find possible $m$. Eliminating $c$ gives:
\[
3m^2 + 8m + 3 = 0 \Rightarrow \text{Product of roots} = \frac{3}{3} = 1
\]