To find the product of the last two digits of \( (1919)^{1919} \), we first determine the last two digits of the number, which is equivalent to finding \( (1919)^{1919} \mod 100 \). We can use Euler's theorem to simplify the calculation.
Euler's theorem states that for any integer \( a \) that is coprime to \( n \), \( a^{\phi(n)} \equiv 1 \pmod{n} \), where \( \phi(n) \) is Euler's totient function. For \( n = 100 \), we determine:
\( \phi(100) = 100 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{5}\right) = 40 \).
Thus, \( 1919^{40} \equiv 1 \pmod{100} \). Since \( 1919 \equiv 19 \pmod{100} \), our task simplifies to finding \( 19^{1919} \mod 100 \).
Now, calculate \( 1919 \mod 40 \) to use the reduced exponent. Since \( 1919 = 40 \times 47 + 39 \), we have:
\( 1919 \equiv 39 \pmod{40} \).
Thus, we need to find \( 19^{39} \mod 100 \).
Using successive squaring:
| \( 19^2 \equiv 361 \equiv 61 \pmod{100} \) |
| \( 19^4 \equiv 61^2 \equiv 3721 \equiv 21 \pmod{100} \) |
| \( 19^8 \equiv 21^2 \equiv 441 \equiv 41 \pmod{100} \) |
| \( 19^{16} \equiv 41^2 \equiv 1681 \equiv 81 \pmod{100} \) |
| \( 19^{32} \equiv 81^2 \equiv 6561 \equiv 61 \pmod{100} \) |
Now, break down \( 19^{39} \):
\( 19^{39} = 19^{32} \times 19^7 \equiv 61 \times 19^7 \pmod{100} \).
Calculate \( 19^7 \) using:
\( 19^7 = 19^4 \times 19^2 \times 19 \equiv 21 \times 61 \times 19 \pmod{100} \).
Calculate individually:
\( 21 \times 61 = 1281 \equiv 81 \pmod{100} \)
\( 81 \times 19 = 1539 \equiv 39 \pmod{100} \)
So, \( 19^7 \equiv 39 \pmod{100} \).
Thus, \( 19^{39} \equiv 61 \times 39 = 2379 \equiv 79 \pmod{100} \).
The last two digits of \( (1919)^{1919} \) are therefore 79. The product of these digits is:
\( 7 \times 9 = 63 \).
This value falls within the given range (63,63).
Since \(1919 \equiv 19 \pmod{100}\), we consider \(19^{19} \pmod{100}\). We can use Euler's totient theorem.
\(\phi(100) = \phi(2^2 \cdot 5^2) = 100 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{5}\right) = 100 \cdot \frac{1}{2} \cdot \frac{4}{5} = 40\).
Since \(\gcd(19, 100) = 1\), by Euler's totient theorem, \(19^{40} \equiv 1 \pmod{100}\).
\(1919 = 40 \cdot 47 + 39\)
So, \(19^{1919} \equiv 19^{40 \cdot 47 + 39} \equiv (19^{40})^{47} \cdot 19^{39} \equiv 1^{47} \cdot 19^{39} \equiv 19^{39} \pmod{100}\).
Now we need to find \(19^{39} \pmod{100}\).
Note that \(19^2 = 361 \equiv 61 \pmod{100}\).
\(19^4 \equiv 61^2 \equiv 3721 \equiv 21 \pmod{100}\)
\(19^8 \equiv 21^2 \equiv 441 \equiv 41 \pmod{100}\)
\(19^{16} \equiv 41^2 \equiv 1681 \equiv 81 \pmod{100}\)
\(19^{32} \equiv 81^2 \equiv 6561 \equiv 61 \pmod{100}\)
Then, \(19^{39} = 19^{32+4+2+1} = 19^{32} \cdot 19^4 \cdot 19^2 \cdot 19 \equiv 61 \cdot 21 \cdot 61 \cdot 19 \pmod{100}\)
\(\equiv (61 \cdot 21) \cdot (61 \cdot 19) \pmod{100}\)
\(61 \cdot 21 = 1281 \equiv 81 \pmod{100}\)
\(61 \cdot 19 = 1159 \equiv 59 \pmod{100}\)
\(19^{39} \equiv 81 \cdot 59 \pmod{100}\)
\(\equiv 4779 \equiv 79 \pmod{100}\)
The last two digits are 79.
The product of the last two digits is \(7 \cdot 9 = 63\).

Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]