Question:

The product of the last 2 digits of $ (1919)^{1919} $ is:

Show Hint

For problems involving powers and last digits, use modular arithmetic to simplify the calculations.
Updated On: Apr 12, 2025
  • 56
  • 63
  • 45
  • 54
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Simplify the Problem
We need to find the last two digits of \(1919^{1919}\), which is equivalent to finding: \[ 1919^{1919} \mod 100 \] Since \(1919 \mod 100 = 19\), the problem reduces to finding: \[ 19^{1919} \mod 100 \]
Step 2: Use Euler's Theorem
Euler's theorem states that if \(a\) and \(n\) are coprime, then: \[ a^{\phi(n)} \equiv 1 \mod n \] where \(\phi(n)\) is Euler's totient function. For \(n = 100\): \[ \phi(100) = 100 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{5}\right) = 40 \] Since 19 and 100 are coprime: \[ 19^{40} \equiv 1 \mod 100 \]
Step 3: Simplify the Exponent
Express the exponent \(1919\) in terms of \(\phi(100) = 40\): \[ 1919 = 40 \times 47 + 39 \] Thus: \[ 19^{1919} = 19^{40 \times 47 + 39} = (19^{40})^{47} \times 19^{39} \equiv 1^{47} \times 19^{39} \equiv 19^{39} \mod 100 \]
Step 4: Compute \(19^{39} \mod 100\)
We use exponentiation by squaring: \[ \begin{aligned} 19^1 &\equiv 19 \mod 100 \\ 19^2 &\equiv 361 \equiv 61 \mod 100 \\ 19^4 &\equiv (19^2)^2 \equiv 61^2 \equiv 3721 \equiv 21 \mod 100 \\ 19^8 &\equiv (19^4)^2 \equiv 21^2 \equiv 441 \equiv 41 \mod 100 \\ 19^{16} &\equiv (19^8)^2 \equiv 41^2 \equiv 1681 \equiv 81 \mod 100 \\ 19^{32} &\equiv (19^{16})^2 \equiv 81^2 \equiv 6561 \equiv 61 \mod 100 \\ \end{aligned} \] Now express 39 as sum of powers of 2: \[ 39 = 32 + 4 + 2 + 1 \] Thus: \[ 19^{39} \equiv 19^{32} \times 19^4 \times 19^2 \times 19^1 \equiv 61 \times 21 \times 61 \times 19 \mod 100 \] Compute step-by-step: \[ \begin{aligned} 61 \times 21 &\equiv 1281 \equiv 81 \mod 100 \\ 81 \times 61 &\equiv 4941 \equiv 41 \mod 100 \\ 41 \times 19 &\equiv 779 \equiv 79 \mod 100 \\ \end{aligned} \] So the last two digits are \(\boxed{79}\).
Step 5: Compute the Product
The digits are 7 and 9, so their product is: \[ 7 \times 9 = \boxed{63} \]
Final Answer
The correct option is \(\boxed{(2) 63}\).
Was this answer helpful?
0
0