Step 1: Simplify the Problem
We need to find the last two digits of \(1919^{1919}\), which is equivalent to finding:
\[ 1919^{1919} \mod 100 \]
Since \(1919 \mod 100 = 19\), the problem reduces to finding:
\[ 19^{1919} \mod 100 \]
Step 2: Use Euler's Theorem
Euler's theorem states that if \(a\) and \(n\) are coprime, then:
\[ a^{\phi(n)} \equiv 1 \mod n \]
where \(\phi(n)\) is Euler's totient function.
For \(n = 100\):
\[ \phi(100) = 100 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{5}\right) = 40 \]
Since 19 and 100 are coprime:
\[ 19^{40} \equiv 1 \mod 100 \]
Step 3: Simplify the Exponent
Express the exponent \(1919\) in terms of \(\phi(100) = 40\):
\[ 1919 = 40 \times 47 + 39 \]
Thus:
\[ 19^{1919} = 19^{40 \times 47 + 39} = (19^{40})^{47} \times 19^{39} \equiv 1^{47} \times 19^{39} \equiv 19^{39} \mod 100 \]
Step 4: Compute \(19^{39} \mod 100\)
We use exponentiation by squaring:
\[
\begin{aligned}
19^1 &\equiv 19 \mod 100 \\
19^2 &\equiv 361 \equiv 61 \mod 100 \\
19^4 &\equiv (19^2)^2 \equiv 61^2 \equiv 3721 \equiv 21 \mod 100 \\
19^8 &\equiv (19^4)^2 \equiv 21^2 \equiv 441 \equiv 41 \mod 100 \\
19^{16} &\equiv (19^8)^2 \equiv 41^2 \equiv 1681 \equiv 81 \mod 100 \\
19^{32} &\equiv (19^{16})^2 \equiv 81^2 \equiv 6561 \equiv 61 \mod 100 \\
\end{aligned}
\]
Now express 39 as sum of powers of 2:
\[ 39 = 32 + 4 + 2 + 1 \]
Thus:
\[ 19^{39} \equiv 19^{32} \times 19^4 \times 19^2 \times 19^1 \equiv 61 \times 21 \times 61 \times 19 \mod 100 \]
Compute step-by-step:
\[
\begin{aligned}
61 \times 21 &\equiv 1281 \equiv 81 \mod 100 \\
81 \times 61 &\equiv 4941 \equiv 41 \mod 100 \\
41 \times 19 &\equiv 779 \equiv 79 \mod 100 \\
\end{aligned}
\]
So the last two digits are \(\boxed{79}\).
Step 5: Compute the Product
The digits are 7 and 9, so their product is:
\[ 7 \times 9 = \boxed{63} \]
Final Answer
The correct option is \(\boxed{(2) 63}\).