Given the ellipse:
\[
\frac{x^2}{9} + \frac{y^2}{25} = 1
\]
and the product of perpendiculars from its two foci on the tangent at any point on the ellipse is to be found.
Step 1: Identify ellipse parameters:
\[
a^2 = 25, \quad b^2 = 9
\]
Since \(a^2 > b^2\), the major axis is along the y-axis.
Foci are located at:
\[
(0, \pm c), \quad c = \sqrt{a^2 - b^2} = \sqrt{25 - 9} = \sqrt{16} = 4
\]
Step 2: Equation of tangent at point \((x_0, y_0)\) on ellipse:
\[
\frac{x x_0}{9} + \frac{y y_0}{25} = 1
\]
Step 3: Perpendicular distance \( d \) from point \( (x_1, y_1) \) to line \( Ax + By + C = 0 \) is:
\[
d = \frac{|A x_1 + B y_1 + C|}{\sqrt{A^2 + B^2}}
\]
Rewrite tangent line:
\[
\frac{x x_0}{9} + \frac{y y_0}{25} - 1 = 0
\]
Multiply through by \(225\) (LCM of 9 and 25) for simplicity:
\[
25 x x_0 + 9 y y_0 - 225 = 0
\]
So:
\[
A = 25 x_0, \quad B = 9 y_0, \quad C = -225
\]
Step 4: Calculate perpendicular distances from foci \( F_1(0,4) \) and \( F_2(0,-4) \):
\[
d_1 = \frac{|25 x_0 \times 0 + 9 y_0 \times 4 - 225|}{\sqrt{(25 x_0)^2 + (9 y_0)^2}} = \frac{|36 y_0 - 225|}{\sqrt{625 x_0^2 + 81 y_0^2}}
\]
\[
d_2 = \frac{|25 x_0 \times 0 + 9 y_0 \times (-4) - 225|}{\sqrt{625 x_0^2 + 81 y_0^2}} = \frac{|-36 y_0 - 225|}{\sqrt{625 x_0^2 + 81 y_0^2}} = \frac{|36 y_0 + 225|}{\sqrt{625 x_0^2 + 81 y_0^2}}
\]
Step 5: Product of perpendiculars:
\[
d_1 d_2 = \frac{|36 y_0 - 225| \times |36 y_0 + 225|}{625 x_0^2 + 81 y_0^2} = \frac{|(36 y_0)^2 - (225)^2|}{625 x_0^2 + 81 y_0^2}
\]
\[
= \frac{|1296 y_0^2 - 50625|}{625 x_0^2 + 81 y_0^2}
\]
Step 6: Using the ellipse equation:
\[
\frac{x_0^2}{9} + \frac{y_0^2}{25} = 1 \implies 25 x_0^2 + 9 y_0^2 = 225
\]
Multiply both sides by 25:
\[
625 x_0^2 + 225 y_0^2 = 5625
\]
Substitute \( 625 x_0^2 = 5625 - 225 y_0^2 \) into denominator:
\[
625 x_0^2 + 81 y_0^2 = (5625 - 225 y_0^2) + 81 y_0^2 = 5625 - 144 y_0^2
\]
Step 7: Substitute in numerator and denominator:
\[
d_1 d_2 = \frac{|1296 y_0^2 - 50625|}{5625 - 144 y_0^2}
\]
Step 8: Check value at point on ellipse \( y_0^2 = 25 \) (since \( b^2 = 9 \) and \( a^2 = 25 \), choose a point that satisfies the ellipse). For example, at \( y_0 = 5 \):
\[
d_1 d_2 = \frac{|1296 \times 25 - 50625|}{5625 - 144 \times 25} = \frac{|32400 - 50625|}{5625 - 3600} = \frac{18225}{2025} = 9
\]
Therefore, the product of perpendiculars from the two foci on the tangent at any point on the ellipse is constant and equal to:
\[
\boxed{9}
\]