The reaction sequence proceeds as follows:
Step 1: Oxidation of \(\text{C}_6\text{H}_5\text{CH}_2\text{CH}_3\) with \(\text{KMnO}_4\) and \(\text{KOH}\)
The side chain ethyl group of ethylbenzene is oxidized to a carboxylate salt:
\[\text{C}_6\text{H}_5\text{CH}_2\text{CH}_3 \rightarrow [\text{KMnO}_4, \text{KOH}, \Delta] \text{C}_6\text{H}_5\text{COOK} (A).\]
Here, \(A\) is \(\text{C}_6\text{H}_5\text{COOK}\), potassium benzoate.
Step 2: Acidification with \(\text{H}_3\text{O}^+\)
The carboxylate salt is acidified to form benzoic acid:
\[\text{C}_6\text{H}_5\text{COOK} + \text{H}_3\text{O}^+ \rightarrow \text{C}_6\text{H}_5\text{COOH} (B).\]
Here, \(B\) is \(\text{C}_6\text{H}_5\text{COOH}\), benzoic acid.
Step 3: Bromination with \(\text{Br}_2/\text{FeBr}_3\)
Bromination occurs at the para-position of the benzene ring relative to the carboxylic acid group, yielding:
\[\text{C}_6\text{H}_5\text{COOH} \rightarrow [\text{Br}_2, \text{FeBr}_3] p-\text{BrC}_6\text{H}_4\text{COOH} (C).\]
Here, \(C\) is para-bromobenzoic acid (\(p-\text{BrC}_6\text{H}_4\text{COOH}\)).
Step 4: Count the \(\pi\)-bonds in \(C\)
- The benzene ring contributes 3 \(\pi\)-bonds.
- The \(\text{C} = \text{O}\) group in the carboxylic acid contributes 1 \(\pi\)-bond.
Thus, the total number of \(\pi\)-bonds in \(C\) is:
\[\pi\text{-bonds} = 3 + 1 = 4.\]
Final Answer: 4.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)