The principal solutions of tan 3θ = –1 are
\(\frac {π}{4}, \frac {7π}{12}, \frac {11π}{12}, \frac {π}{16}, \frac {19π}{4}, \frac {23π}{12}\)
\(\frac {π}{4}, \frac {7π}{12}, \frac {11π}{12}, \frac {5π}{4}, \frac {19π}{12}, \frac {23π}{12}\)
\(\frac {π}{4}, \frac {π}{12}\)
\(\frac {π}{4}, \frac {π}{12}, \frac {13π}{12}, \frac {7π}{4}, \frac {19π}{4}, \frac {23π}{12}\)
Tan 3θ = -1
Tan 3θ = - Tan \(\frac {π}{4}\) = Tan (π - \(\frac {π}{4}\)) = Tan (2π - \(\frac {π}{4}\)) = Tan (3π - \(\frac {π}{4}\)) = Tan (4π - \(\frac {π}{4}\)) = Tan (5π - \(\frac {π}{4}\)) = Tan (6π - \(\frac {π}{4}\))
Tan 3θ = tan \(\frac {3π}{4}\) = tan \(\frac {7π}{4}\) = tan \(\frac {11π}{4}\) = tan \(\frac {15π}{4}\) = tan \(\frac {19π}{4}\) = tan \(\frac {23π}{4}\)
3θ = \(\frac {3π}{4}\) = \(\frac {7π}{4}\) = \(\frac {11π}{4}\) = \(\frac {15π}{4}\) = \(\frac {19π}{4}\) = \(\frac {23π}{4}\)
θ = \(\frac {π}{4}\) = \(\frac {7π}{12}\) = \(\frac {11π}{12}\) =\(\frac {5π}{4}\)= \(\frac {19π}{12}\) = \(\frac {23π}{12}\)
So principal solutions are {\(\frac {π}{4}\), \(\frac {7π}{12}\), \(\frac {11π}{12}\), \(\frac {5π}{4}\), \(\frac {19π}{12}\), \(\frac {23π}{12}\)}
Therefore the correct option is (B).
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to:
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |