The power radiated by a linear antenna is proportional to the square of the current and the square of the antenna's length. Additionally, the radiated power depends inversely on the square of the wavelength of the electromagnetic wave. Thus, the proportionality relation is: \[ P \propto \left( \frac{l}{\lambda} \right)^2. \]
Final Answer: The power radiated from a linear antenna is proportional to: \[ \boxed{\left( \frac{l}{\lambda} \right)^2}. \]
A sub-atomic particle of mass \( 10^{-30} \) kg is moving with a velocity of \( 2.21 \times 10^6 \) m/s. Under the matter wave consideration, the particle will behave closely like (h = \( 6.63 \times 10^{-34} \) J.s)