The velocities of particles \( A \) and \( B \) are: \[ \vec{V}_A = 2t \hat{i} + 6nt \hat{j} + 8pt^2 \hat{k} \] \[ \vec{V}_B = 2t \hat{i} - 2t \hat{j} + 4pt^2 \hat{k} \] Since \( \vec{V}_A \cdot \vec{V}_B = 0 \), we get: \[ 4 - 6n + 8p = 0 \] \[ 2 - 3n + 4p = 0 \quad \Rightarrow \quad 3n = 2 + 4p \] Solving this, we get \( p = \frac{-1}{4} \), and \( n = \frac{1}{3} \).
Thus, the angular momentum \( L \) is: \[ \vec{L} = m \left( \vec{r}_{A/B} \times \vec{V}_A \right) \]
Using the cross product, we get: $\vec{r}_{A/B} = (\alpha_1 - \beta_1) \hat{i} + (\alpha_2 - \beta_2) \hat{j} + (\alpha_3 - \beta_3) \hat{k}$ $= (1-2) \hat{i} + (1+1) \hat{j} + 3 \hat{k}$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} -1 & 2 & 32 & 1 & 2 \end{vmatrix}$ $= \hat{i}(4-3) - \hat{j}(-2-6) + \hat{k}(-1-4)$ $= \hat{i} + 8\hat{j} - 5\hat{k}$ $= \sqrt{1^2 + 8^2 + (-5)^2}$
Thus: \[ \sqrt{1 + 64 + 25} = \sqrt{90} \]