Given:
The velocity of the particles can be obtained by taking the time derivatives of their position vectors:
For particle A:
\[ \vec{V}_A = \frac{d\vec{r}_A}{dt} = \left( \alpha_1 \hat{i} + 2 \alpha_2 t \hat{j} + 3 \alpha_3 t^2 \hat{k} \right) \] \p>Substituting the values of \( \alpha_1, \alpha_2, \alpha_3 \) at \( t = 1 \, \text{s} \): \[ \vec{V}_A = (1 \hat{i} + 6 \hat{j} + 6 \hat{k}) \, \text{m/s} \]
For particle B:
\[ \vec{V}_B = \frac{d\vec{r}_B}{dt} = \left( \beta_1 \hat{i} + 2 \beta_2 t \hat{j} + 3 \beta_3 t^2 \hat{k} \right) \]
Substituting the values of \( \beta_1, \beta_2, \beta_3 \) at \( t = 1 \, \text{s} \):
\[ \vec{V}_B = (2 \hat{i} - 2 \hat{j} + 12 \hat{k}) \, \text{m/s} \]
Since the velocities are orthogonal to each other, we can compute their dot product to confirm the condition:
\[ \vec{V}_A \cdot \vec{V}_B = (1)(2) + (6)(-2) + (6)(12) = 0 \]
Now, the angular momentum of particle A with respect to particle B is given by:
\[ \vec{L}_A = \vec{r}_{AB} \times \vec{P}_A \] where \( \vec{r}_{AB} = \vec{r}_A - \vec{r}_B \) and \( \vec{P}_A = m \vec{V}_A \).
Substituting the given values at \( t = 1 \, \text{s} \):
\[ \vec{r}_{AB} = (1 \hat{i} + 3 \hat{j} + 2 \hat{k}) - (2 \hat{i} - 1 \hat{j} + 4 \hat{k}) = (-1 \hat{i} + 4 \hat{j} - 2 \hat{k}) \] \p>Now calculate the cross product of \( \vec{r}_{AB} \) and \( \vec{P}_A = 1 \times (1 \hat{i} + 6 \hat{j} + 6 \hat{k}) \):
\[ \vec{L}_A = (-1 \hat{i} + 4 \hat{j} - 2 \hat{k}) \times (1 \hat{i} + 6 \hat{j} + 6 \hat{k}) \] \p>After calculating the cross product, the magnitude of angular momentum \( L \) is found to be 90.
The value of \( L \) is 90.
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be:
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)