The velocity vector is the derivative of the position vector \( \mathbf{r} \) with respect to time: \[ \mathbf{v} = \frac{d}{dt} \left( 5t^2 \hat{i} - 5t \hat{j} \right) = 10t \hat{i} - 5 \hat{j}. \] At \( t = 2 \) s, the velocity is: \[ \mathbf{v} = 20 \hat{i} - 5 \hat{j} \, \text{m/s}. \] The magnitude of the velocity is: \[ |\mathbf{v}| = \sqrt{20^2 + (-5)^2} = \sqrt{400 + 25} = \sqrt{425} = 5\sqrt{17} \, \text{m/s}. \] The direction of the velocity is given by the angle \( \theta \) with the \( -\hat{y} \) axis: \[ \tan \theta = \frac{|\text{component along } \hat{x}|}{|\text{component along } \hat{y}|} = \frac{20}{5} = 4. \] Thus, \( \theta = \tan^{-1}(4) \).
Final Answer: \( 5\sqrt{17} \, \text{m/s}, \text{making an angle of } \tan^{-1}(4) \text{ with the } -\hat{y} \text{ axis} \).
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
