The velocity vector is the derivative of the position vector \( \mathbf{r} \) with respect to time: \[ \mathbf{v} = \frac{d}{dt} \left( 5t^2 \hat{i} - 5t \hat{j} \right) = 10t \hat{i} - 5 \hat{j}. \] At \( t = 2 \) s, the velocity is: \[ \mathbf{v} = 20 \hat{i} - 5 \hat{j} \, \text{m/s}. \] The magnitude of the velocity is: \[ |\mathbf{v}| = \sqrt{20^2 + (-5)^2} = \sqrt{400 + 25} = \sqrt{425} = 5\sqrt{17} \, \text{m/s}. \] The direction of the velocity is given by the angle \( \theta \) with the \( -\hat{y} \) axis: \[ \tan \theta = \frac{|\text{component along } \hat{x}|}{|\text{component along } \hat{y}|} = \frac{20}{5} = 4. \] Thus, \( \theta = \tan^{-1}(4) \).
Final Answer: \( 5\sqrt{17} \, \text{m/s}, \text{making an angle of } \tan^{-1}(4) \text{ with the } -\hat{y} \text{ axis} \).
The steam volatile compounds among the following are: