The velocity vector is the derivative of the position vector \( \mathbf{r} \) with respect to time: \[ \mathbf{v} = \frac{d}{dt} \left( 5t^2 \hat{i} - 5t \hat{j} \right) = 10t \hat{i} - 5 \hat{j}. \] At \( t = 2 \) s, the velocity is: \[ \mathbf{v} = 20 \hat{i} - 5 \hat{j} \, \text{m/s}. \] The magnitude of the velocity is: \[ |\mathbf{v}| = \sqrt{20^2 + (-5)^2} = \sqrt{400 + 25} = \sqrt{425} = 5\sqrt{17} \, \text{m/s}. \] The direction of the velocity is given by the angle \( \theta \) with the \( -\hat{y} \) axis: \[ \tan \theta = \frac{|\text{component along } \hat{x}|}{|\text{component along } \hat{y}|} = \frac{20}{5} = 4. \] Thus, \( \theta = \tan^{-1}(4) \).
Final Answer: \( 5\sqrt{17} \, \text{m/s}, \text{making an angle of } \tan^{-1}(4) \text{ with the } -\hat{y} \text{ axis} \).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: