The bead moves under the influence of gravity and the restoring force from the spring.
Step 1: Apply energy conservation. At the top of the hoop, the bead has potential energy due to gravity and the spring. At the bottom, the bead will have kinetic energy.
Step 2: At the top, the potential energy is: \[ U_{\text{top}} = mgh = mg(2R) \] where \( h = 2R \) is the height of the bead from the bottom.
Step 3: The spring potential energy at the top is zero since the spring is at its equilibrium length.
Step 4: At the bottom, the kinetic energy is: \[ K_{\text{bottom}} = \frac{1}{2} m v^2 \] The spring at the bottom has a compression of \( R \), so the spring potential energy is: \[ U_{\text{spring}} = \frac{1}{2} k R^2 \] Step 5: Apply conservation of mechanical energy: \[ m g (2R) = \frac{1}{2} m v^2 + \frac{1}{2} k R^2 \] Step 6: Solve for \( v \): \[ v = \sqrt{\frac{2gR + kR^2}{m}} \] Final Conclusion: The velocity of the bead when the spring becomes \( R \) is given by \( \sqrt{\frac{2gR + kR^2}{m}} \), which is Option (3).
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .