Step 1: Forces acting on the ball.
When the ball falls through the viscous liquid, three forces act on it:
Step 2: Condition at terminal velocity.
At terminal velocity, the ball moves with constant speed. Hence, net force = 0: \[ Mg = F_b + F_v. \]
Step 3: Express buoyant force.
Let the density of the ball be \( \rho_b \). Then: \[ F_b = V\rho_f g. \] The mass of the ball is \( M = V\rho_b \). Substitute into the equilibrium equation: \[ V\rho_b g = V\rho_f g + F_v. \] \[ F_v = Vg(\rho_b - \rho_f). \]
Step 4: Use the given condition.
Given: \( \rho_f = \dfrac{\rho_b}{2}. \) \[ F_v = Vg\left(\rho_b - \dfrac{\rho_b}{2}\right) = Vg\left(\dfrac{\rho_b}{2}\right) = \dfrac{1}{2}V\rho_b g. \] Since \( M = V\rho_b \): \[ F_v = \dfrac{1}{2}Mg. \]
Step 5: Verify direction and balance.
At terminal velocity: \[ Mg = F_b + F_v = \dfrac{Mg}{2} + \dfrac{Mg}{2} = Mg. \] Thus, equilibrium holds true
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 