Step 1: Forces acting on the ball.
When the ball falls through the viscous liquid, three forces act on it:
Step 2: Condition at terminal velocity.
At terminal velocity, the ball moves with constant speed. Hence, net force = 0: \[ Mg = F_b + F_v. \]
Step 3: Express buoyant force.
Let the density of the ball be \( \rho_b \). Then: \[ F_b = V\rho_f g. \] The mass of the ball is \( M = V\rho_b \). Substitute into the equilibrium equation: \[ V\rho_b g = V\rho_f g + F_v. \] \[ F_v = Vg(\rho_b - \rho_f). \]
Step 4: Use the given condition.
Given: \( \rho_f = \dfrac{\rho_b}{2}. \) \[ F_v = Vg\left(\rho_b - \dfrac{\rho_b}{2}\right) = Vg\left(\dfrac{\rho_b}{2}\right) = \dfrac{1}{2}V\rho_b g. \] Since \( M = V\rho_b \): \[ F_v = \dfrac{1}{2}Mg. \]
Step 5: Verify direction and balance.
At terminal velocity: \[ Mg = F_b + F_v = \dfrac{Mg}{2} + \dfrac{Mg}{2} = Mg. \] Thus, equilibrium holds true

A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: