The compressional wave velocity (\( V_p \)) can be calculated using the following formula:
\[
V_p = \sqrt{\frac{K + \frac{4}{3} \mu}{\rho}}
\]
where:
- \( K \) is the bulk modulus (36 GPa),
- \( \mu \) is the shear modulus (30 GPa),
- \( \rho \) is the density of the formation (calculated below).
First, we calculate the density of the formation using the formula:
\[
\rho = \phi \rho_f + (1 - \phi) \rho_m
\]
where:
- \( \phi \) is the porosity (0.15),
- \( \rho_f \) is the fluid density (1.0 g/cc),
- \( \rho_m \) is the matrix density (2.65 g/cc).
Substitute the values into the equation:
\[
\rho = (0.15)(1.0) + (1 - 0.15)(2.65) = 0.15 + 2.2525 = 2.4025 \, {g/cc} = 2402.5 \, {kg/m}^3
\]
Now, convert the units of \( K \) and \( \mu \) to the SI unit of Pascals (Pa):
\[
K = 36 \times 10^9 \, {Pa}, \quad \mu = 30 \times 10^9 \, {Pa}
\]
Substitute the values of \( K \), \( \mu \), and \( \rho \) into the formula for \( V_p \):
\[
V_p = \sqrt{\frac{36 \times 10^9 + \frac{4}{3}(30 \times 10^9)}{2402.5}} = \sqrt{\frac{36 \times 10^9 + 40 \times 10^9}{2402.5}}
\]
\[
V_p = \sqrt{\frac{76 \times 10^9}{2402.5}} = \sqrt{31.61 \times 10^6} = 5622.7 \, {m/s}
\]
Thus, the compressional wave velocity in the formation is approximately \( 5.62 \times 10^3 \, {m/s} \), which lies between 5.50 and 5.70 x 10³ m/s.