P and Q play chess frequently against each other. Of these matches, P has won 80% of the matches, drawn 15% of the matches, and lost 5% of the matches.
If they play 3 more matches, what is the probability of P winning exactly 2 of these 3 matches?
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
A quadratic polynomial \( (x - \alpha)(x - \beta) \) over complex numbers is said to be square invariant if \[ (x - \alpha)(x - \beta) = (x - \alpha^2)(x - \beta^2). \] Suppose from the set of all square invariant quadratic polynomials we choose one at random. The probability that the roots of the chosen polynomial are equal is ___________. (rounded off to one decimal place)
Identify the option that has the most appropriate sequence such that a coherent paragraph is formed:
Statement:
P. At once, without thinking much, people rushed towards the city in hordes with the sole aim of grabbing as much gold as they could.
Q. However, little did they realize about the impending hardships they would have to face on their way to the city: miles of mud, unfriendly forests, hungry beasts, and inimical local lords—all of which would reduce their chances of getting gold to almost zero.
R. All of them thought that easily they could lay their hands on gold and become wealthy overnight.
S. About a hundred years ago, the news that gold had been discovered in Kolar spread like wildfire and the whole State was in raptures.
For a hydrocarbon reservoir, the following parameters are used in the general material balance equation (MBE):
\[ \begin{aligned} N & = \text{Initial (original) oil in place, stb} \\ G & = \text{Initial volume of gas cap, scf} \\ m & = \text{Ratio of initial volume of gas cap to volume of oil initial in place, rb/rb} \\ S_{wi} & = \text{Initial water saturation} \\ S_{oi} & = \text{Initial oil saturation} \\ B_{oi} & = \text{Initial oil formation volume factor, rb/stb} \\ B_{gi} & = \text{Initial gas formation volume factor, rb/scf} \end{aligned} \]
The total pore volume (in rb) of the reservoir is: